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ABSTRACT 

Wilcoxon's signed ranlc t e s t  and a t e s t  based on the  uniform minimum 

variance unbiased estimator of P(Xl+ X2 < y + Y2) a re  considered a s  competitors 1 
of the Mann-Whitney-Wilcoxon (U) t e s t .  The c r i t e r i a  used t o  compare the  t e s t s  

a r e  Bahadur and Pitman eff ic iency.  For pure t r ans l a t ion  a l t e rna t ives  U is 

superior,  but both t e s t s  compare favorably with respect t o  U f o r  ce r t a in  contami- 

nat ion a l t e rna t ives .  

1. INTRODUCTION 

L e t  Xl, ..., Xm be independent and iden t i ca l ly  d i s t r ibu ted  according t o  

F1 and Y1, ..., Y 

F1 F a re  assumed continuous. 

Wilcoxon U s t a t i s t i c  ([12], 173) f o r  tes t ing  €Io: F1= F2= F against  t r ans l a t ion  

a l t e rna t ives  (3.1) a r e  well known (e.g. see C31, [41). 

be a t t r ibu ted ,  i n  p a r t ,  t o  the f a c t  tha t  U/mn (2.1) i s  the uniform minimum 

variance unbiased estimator of P(Xl < Y1), a r e s u l t  given by Lehmann [SI. 

suggests the invest igat ion of t e s t s  based on s t a t i s t i c s  which, when su i tab ly  

be independent and ident ica l ly  d is t r ibu ted  according t o  F2 where n 

The excellent propert ies  of the  Mann-Whitney- ' 2  

These propert ies  may 

This 

scaled, are consis tent  estimators of the r e l a t ed  parameter P(X + X2 < Y1+ Y2). 1 
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I n  t h i s  paper we concern ourselves with two s t a t i s t i c s  having t h i s  property. 

The W s t a t i s t i c .  (2.3) is Wilcoxon’s signed rank s t a t i s t i c  [121 applied 

t o  a random pair ing of the X ’ s  with the  Y’s. The V s ta t i s t ic  (2.5)’ which i s  the  

uniform minimum variance unbiased estimator of P(X + X2 < Y1+ Y2), i s  defined t o  

be the  proportion of the 2 2 quadruples (Xi,X Yk,YE) with i < j and k < E 

s a t i s fy ing  the inequal i ty  X.+ X 

1 (“>o j; 

< Yk+ YE. 
1 j  

I n  sect ion 2 w e  show t h a t  V i s  not d i s t r ibu t ion- f ree  under H but an 0’ 

asymptotically d is t r ibu t ion- f ree  procedure based on V i s  defined. 

Section 3 i s  devoted t o  efficiency comparisons of U,V, and W f o r  t rans la -  

t i o n  and contamination a l t e rna t ives .  

than U f o r  normal t rans la t ion ,  the  calculat ions of t h i s  sec t ion  i l l u s t r a t e  the 

general  super ior i ty  of U t o  V and W f o r  t r ans l a t ions  both near and away from Ho. 

However, when w e  consider contamination a l t e rna t ives  of the form F2(x) = (1-p) 

F (x) + pF ( x - 9 ,  f o r  p c lose t o  0 and 8 large our e f f ic iency  calculat ions favor 

V and W. 

tJ t o  v. 

Although V i s  s l i g h t l y  more Pitman e f f i c i e n t  

1 1 
I n  t h i s  sect ion (and sect ion 2) we a l s o  discuss the  re la t ionship  of 

Section 4 cont ras t s  the use of the random-paired signed rank t e s t  W i n  

place of U with normal theory practice where the  random-paired t- test  is some- 

times preferred t o  the usual two sample t - t e s t .  

2. DEFINITIONS AND BASIC FACTS 

The Mann-Whitney form of Wilcoxon’s s ta t i s t ic  i s  

m n  

i=l j=l 
u = c c Q (Xi,Yj) 

where 

1 i f  a c b  
@(a,b)  = 
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To define the  W s t a t i s t i c ,  l e t  us f i r s t  take m- and assume f o r  s implici ty  

(and without loss of general i ty)  t ha t  the random pai r ing  of the X ' s  wi th  the Y ' s  

r e s u l t s  i n  the pa i r s  (Xi,Y ), i.=1,2,.. .,n. 

i n  t he  j o i n t  ranking from l e a s t  to greatest  of [D,]a=l . 
L e t  D = !Xi- Yil and Ri = rank of Di 

i i 
n Then Wilcoxon's signed 

rank s t a t i s t i c  i s  
n 

i=l 
W = C Ri@(Xi,Yi). (2 .3)  

If m i n. w e  define the  W test  as the  one obtained by computing (2.3) a f t e r  we 

have randomly discarded observations from the  l a rge r  sample t o  equalize the  sample 

s izes .  
* 

In  t h i s  case the  "n" of (2.3) i s  replaced by n = min[n,m]. 

Using a representation due t o  Tukey 1111 w e  may write W as 

n n 
w = c @(Xi+ x Y . f  Y.) + C 0(X1,Yi). 

1' 1 J i.;l i < j  
(2.4) 

I 
Let t ing  W 

\I and W '  a r e  asymptotically equivalent t e s t  s t a t i s t i c s  and t h a t  ZW'/n(n-l) is  

denote t h e  f i r s t  term on the r igh t  of (2.4), it i s  eas i ly  seen t h a t  

an unbiased and consis tent  estimator of P(X + X2 C Y1+ Y 2 ) .  1 

The uniform minimum variance unbiased,estimator of P(X + X2 Y1+ Y2) i s  1 

V =  
i C  j 

This follows from a d i r ec t  appl icat ion of a lemma due t o  Lehmann and 

Scheffe (Lemma 3.2 of [ 5 ] ) .  

based on more 

i s  computed f o r  n (n-1) /4 quadruples i n  the  case of V versus n(n-1)/2 f o r  W'. 

We remark that  the s t a t i s t i c  V, even when m=n, i s  

I t  information'' than W' as the indicator  function @(X,+ X Yk+ Y a )  
1 j ' 

' 2  2 .  

Unlike U and W, V i s  not d i s t r ibu t ion- f ree  under H To see t h i s  we 
0' 
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f i r s t  apply Lehmann' s generalized U-s t a t i s t i c  theorem [SI  t o  obtain 

Theorem 1: 

N"(V-P(X1+ X2 < Y1+ Y,)) has a l imi t ing  normal d i s t r ibu t ion  with mean 0 and 

asymptotic variance 4(s- lSl0+ (1-s) 601) where 

If 0 < P(X1 < Y1) < 1, m=sN, n=(l-s)N with 0 < s < 1, then 
1- 

-1 

(2 6 )  bl0 EIO(X1+ X2,Y1+ Y2)4(X1+ X3, Y3+ Y 4 ) 1  - E 2 @(X1+ X2, Y1+ Y2) 

and 

(2.7) 
2 Sol = EIO(Xl+ X2, Y + Y 2 ) @ ( X  + X 4 ,  Y1+ Y3)1 - E @(X1+ X2, Y1+ Y2). 1 3 

Under Ho, 

= A(F) - 1/4 &lo = 6ol 

where 

when X1,X2, ..., X 

Lehmann [61 has obtained d i f fe ren t  values of X(F) f o r  various F and thus the 

n u l l  d i s t r ibu t ion  of V w i l l  depend on F. 

a re  independent and ident ica l ly  d is t r ibu ted  according t o  F. 7 

I n  the remainder of t h i s  paper the phrase "the V t e s t "  w i l l  mean the 

as a 
- A  

asymptotically d is t r ibu t ion- f ree  procedure which t r e a t s  ( V - ( 1 / 2 y u  (V) 

un i t  normal random variable  under H where 

A 

0 

(2.10) 2 
uA(V) = ( 4 X ( F )  -1) (m-'+ n- l )  

^2 
and U,(V) is  defined by replacing A(F) with a consistent estimate i n  (2.10).  One 

n 

such estimate,  

t he  following. 

define X(F) t o  
h 

similar  t o  one proposed by Lehmann [6] i n  another context, i s  

Let Z1,Z2,. . . ,Z denote the combined sequence of X ' s  and Y ' s  and N 
be the r e l a t ive  frequency of the event (Z, < Z + Za! - Z, ; 

l a r 2  3 4 
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2, < Z, + Z, - Za ). 
1 5 6 7  

This estimate is tedious t o  compute and in practice only 

a small proportion of the total number of such simultaneous inequalities should 

be checked. 

3 .  EFFICIENCIES FOR TRANSLATION AND CONTAMINATION ALTERNATIVES 

We first consider translation alternatives 

H1: F1(x) = F(x), F2(x) = F(x-O), 6' > 0, (3.1) 

and utilize Bahadur efficiency ([l], [21) to obtain a measure of asymptotic per- 

formance for each fixed 8. 

For the efficiency calculations of this section we lose no generality in 

assuming m 2 n and thus we write m=sN, n=(l-s)N, with 1/2 ,< s < 1. We define 

I4 -Eo (IJ) w-(n(n+l) /4) 
Do (io (n(n+l) (2n+1)/24) S '  

(3 .3 )  

where the subscript 0 denotes that the moment is computed under Ho and A(F) and 

uA(V) are defined by (2 .9 )  and (2.10). By using Chebychev's inequality it 

follows that 

T p  h bu(8) = p-lim - = (12s(1-s)) [IF(x+B)dF(x)-(l/2)1 , f N 
(3.5) 
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TS" s(1-s))' [ \G(x+28)dG(x)-(1/2) 1 bV(B) = p - l i m  - = ( 9 
N ??i 4X(F) -1 

(N) 
bw(B) = p - l i m  Tr.J = (3(1-s))' [JG(x+2Q)dG(x)-(1/2)] , 

N 2  

where G i s  the  d i s t r ibu t ion  function of X - 1 

iden t i ca l ly  d i s t r ibu ted  according t o  F. In  

denotes t h e  probabi l i ty  l i m i t  of the  random 

a l t e rna t ives .  

Conditions I, I1 and 111 of Bahadur 

and w e  may state 

X2 when X1 X are 

equations (3.5) - 
' 2  

var iab le  computed 

(3 .6)  

(3.7) 

independent and 

(3.71, "p-lim" 

under the  H1 

(El], p.276) are immediately ve r i f i ed  

Theorem 2: For t he  H1 a l t e rna t ives  (3.1)' t h e  Bahadur e f f i c i enc ie s  a r e  

(3.3) 

2 
The quan t i t i e s  bi(8), i=U,V,IJ are, i n  the terminology of Bahadur, t h e  asymptotic 

s lopes of the  tests based on TU (N) ' TV (N), and T F '  respect ively.  

P a r t  of Bahadur's motivation (special ized t o  our s t a t i s t i c s )  of this 

The approximate l eve l s  a t t a ined  by the  e f f i c i ency  measure i s  the  following. 

s ta t is t ics  T Y )  which r e j e c t  fo r  large values a r e  1 - Q ( T T ) ) ,  i = U,V,W, where 

Q i s  the  un i t  normal cumulative d i s t r ibu t ion  function. 

r e l a t e s  t o  the  f a c t  t h a t  the l imi t ing  n u l l  d i s t r i b u t i o n  0 of T Y ) ,  r a t h e r  than 

the  exact n u l l  d i s t r ibu t ion ,  is used. 

The word approximate 

Suppose now that H1 i s  t rue .  For a given 
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outcome of the N X’s and Y’s it makes sense t o  say the T(N) procedure, f o r  example, 

i s  b e t t e r  than the T(N) procedure i f  1 - @ ( T F ) )  < 1 - O ( T F ) ) ,  or  equivalently 

i f  l$, (N)< e’ where Ki (N)= -2 log[l-C)(Ty))]. The eff ic iency measure B6(W,U) has 

the  property tha t  t he  random variable  e)/e) converges i n  probabi l i ty  t o  

W 

U 

Be(W,U) as N +m. Paraphrasing Bahadur, with probabi l i ty  tending t o  1, T:) is 

less successful ( for  the pa r t i cu la r  6) than T(N) i f  B (W,U) < 1, more successful 

i f  B (W,U) > 1, and equally successful t o  t h i s  degree of approximation i f  

Be(IJ,U) = 1. Of course t h i s  i s  not the only motivation given by Bahadur, and 

the  reader in te res ted  i n  other  in te rpre ta t ions ,  advantages, and p i t f a l l s  of 

t h i s  e f f ic iency  measure should r e fe r  t o  the papers of Bahadur and Gleser. 

U 6 

8 

Table 1 gives values of the  Bahadur e f f i c i enc ie s  when F i s  normal with 

variance d . I n  a l l  the  Tables of t h i s  paper the e n t r i e s  involving W a r e  only 

va l id  f o r  s = 1/2,  but the W ef f ic ienc ies  for  s > 1/2 are obtained simply by 

dividing the  tabular  values by 2s .  

2 

TABLE 1: BAHADUR EFFICIENCIES FOR NORMAL TRANSLATION 

B8(W,U) .990 .960 .860 .641 ,533 
~ 

Be(V,U) 1.025 .995 .891 .665 .552 

From (3.8) and (3.9) we see that  Be(V,U) does not depend on s .  Also, 

(3.10) -1 
B$W,V) = (Be(W,U)/Be(V,U)) = S (12A(F)-3), 

The K Y )  random variable  i s  introduced by Bahadur fo r  mathematical convenience. 
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and this expression is independent of 8. Furthermore, letting 8 --,a in (3.3) 

and noting that 

lim [JG(x+28)dG(x)-(1/2) 1 = 1/2 = lirn [/F(x+e)dF(x)-(l/2) 1, 
6 - t W  e -  

(3.11) 

ve have 
-1 -1 Corollary 1: lirn BO(W,U) = (4s) . lim Be(V,U) = (48X(F)-12) . 

e -  e- - , -  

Even in the most favorable case for W, namely s = 1/2, this limiting Bahadur 

efficiency is only . 5 .  Also, the values of 

for the normal, uniform, and exponential distributions, respectively. Thus for 

lim B8(V,U) are .518, ,510, and .529 
e - + -  

pure translation alternatives which are far from H we cannot, using Bahadur 

efficiency as a criterion, recommend either W or V as a satisfactory competitor 
0 

for U. 

The standing of W and V, as competitors of U, is improved only slightly 

for translation alternatives near H 

a result of Bahadur ([l], Appendix 2) we may state 

Corollary 2: The Pitman efficiencies for the sequence of alternatives 

By letting 6 + 0 in (3.8) and applying 0' 

E(W,U) = (SI ' ' (  /g2/1f 'I*, (3.12) 

E(V,U) = (12A(F) -3)-'( 1g2//f 2, 2, (3.13) 

where f,g are the  d e n s i t i e s  ( n o w  assumed to e x i s t )  corresponding to F,G. 

The Pitman efficiencies are also easily derived by a direct application 

of Pitman's formula 181. In fact, equation (3.12) should not be regarded as 

new as it is implicit in the work of Pitman [9] where the efficacies of both 

the Wilcoxon signed rank test and the Wilcoxon-Mann-Vhitney rank sum test are given. 
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For s = 1/2, E(W,U) equals 2/3 of the Pitman efficiency of the signed 

rank test with respect to the sign test for a single sample from the distribution 

G. Some values are given in Table 2. 

TABLE 2: PITMAN EFFICIENCIES OF THE RANDOM-PAIRED SIGNED 
RANK TEST W WITH MSPECT TO U FOR TRANSLATION ALTERNATIVES 

Distribution Density E (W ,VI 
2 

1. Normal f(x) = (2n) e , - m < x < m .  1.00 -112 -x 12 

2. Uniform f(x) t 1, 0 5 x 5 1; 0 otherwise. .889 

.781 3 .  r'(2) f(x) = xe , x > 0 ;  0 otherwise. 

.720 4 .  Cosine f(x) = (l-cos(x))/m , - 00 < x < m . 

.500 5.  Exponential f(x) = e , x > 0;  0 otherwise. 

.500 

-X 

2 

-X 

2 -1 6. Cauchy f(x) = (x(l+x )) , - c x < m  . 

Although there is no loss in Pitman efficiency for normal translation, 

the values in Table 2 favor U over W. The status of V for these alternatives 

is substantially the same as that of W. 

E(V,U) for densities 1,2, and 5 of Table 2 are, respectively, 1.036, .906, 

and .529. 

Using (3.13) we find the values of 

There is some independent theoretical interest in the relationship of 

W to V. The statistic V is tedious to compute and not distribution-free under 

Ho. 
disadvantage of utilizing an irrelevant randomization. 

The random-paired signed rank test removes these difficulties but has the 

How much efficiency is 

lost by using W in place of V? 

Table 3 we list some values. 

The E(W,V) expression is given by (3.10) and in 
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TABLE 3: EFFICIENCY OF W WITH RESPECT TO V 

~ 

Distribution Normal Uniform Exponential 

The losses in efficiency, when using W in place of V in the equal sample 

size case, are only 1.9, 3.5, and 5.6 per cent respectively, for the uniform, 

normal, and exponential distributions. (Lehmann [ 6 3  has proved A(F) 5 7/24 

which implies E(W,V) - < 1 for all F.) 

We next consider the contamination alternatives 

with the normal theory t-test. From (Z.l), (2.4), and (2 .5 )  we have 

(3.15) 

* 
(3.16) = 1-JL(1-p) 2 *  F F+2p(l-p)F*H+p2H*Hld(F F), 

where ”*” denotes convolution and the subscript p indicates the moment is com- 
puted under H2. 

* ?  

From Chebychev’s inequality we obtain 

TS’ ?. 
c,(p) = p-lim ti = (s(l-~)12)~~(p/2> - plHdF1, 

N 
(3.17) 

(3.i8) 



- 11 - 
c,(p) = p - l i m  1- T F )  = ( 3 ( 1 - ~ ) )  % L(p,F,H), 

N5 
(3.19) 

where 

L(p,F,H) = [p-(p2/2) - 2p(l-p)/(F*H)d(F*F) - p2.f(H*H)d(F*F) 1, (3.20) 

and the  symbol ''p-lim1' i n  equations (3.17) - (3.19) now denotes the probabi l i ty  

l i m i t  of the random variable  computed under the  H a l te rna t ives .  We then have 

Theorem 3: 

2 

For t he  H2 a l te rna t ives  (3.14), the Bahadur e f f i c i enc ie s  are 

(3.21) 

The e f f ic iency  B (W,V) i s  independent of p and H and is again given by (3.10). 

Thus Table 3 i s  a l so  applicable for  the contamination a l te rna t ives .  
P 

When H(x) = F(x-8), 

2 
l i m  L(pJF,H) = P- P I 

e + -  
(3.23) 

and w e  then obtain 

Corollary 3: For the  H2 a l te rna t ives  with H(x) = F(x-8) 
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The l imit ing Bahadur e f f ic ienc ies  of Corollary 3 are decreasing functions 

of p but remain above 1 fo r  f a i r l y  large p. For example, for  s = 1 / 2 ,  

l i m  B (W,U) i s  greater  than 1 as long as  p i s  less than (approximately).536. 
g - * m  p 

‘The indicat ion i s  tha t  fo r  contamination with a large t rans la t ion ,  V and W rate 

a s  se r ious  competitors of U, especially for  small p.  This impression i s  fur ther  

j u s t i f i e d  by the Pitman ef f ic ienc ies .  Let t ing p -+ 0 i n  (3.21) y ie lds  

Corollary 4: For the  H2 a l te rna t ives ,  the  Pitman e f f i c i enc ie s  (p -+ 0) are 

s-’[l(F*F)d(F*”) -( 1/2) l2 
E(W,U) = Y 

[.fFdH - (1/2) 

[ (F*F) d (F*H) - ( 1/ 2) 1 

(12A(F) -3) [jFdH-(1/2) l2 
E(V,U) = 

(3.25) 

(3.26) 

The en t r i e s  i n  Table 4 are  selected values of the Pitman e f f i c i enc ie s  

2 
when H(x) = F(x-6) and F i s  normal with variance u . 

TABLE 4: PITMAN EFFICIENCIES FOR 

CONTAMINATION BY A NORMAL SHIFT 

e/ a .25 .5 1 2 3 

E(W,U) 1.005 1.021 1.082 1.313 1.608 

E(V,U) 1.041 1.058 1.122 1.360 1.667 
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Corollary 5: For the contamination a l te rna t ives  with H(x) = F(x-8), we have 

-1 a .  l i r n  E(W,U) = s . l i m  E(V,U) = (12X(F)-3)'l. 
e + =  e - * =  (3.27) 

b. For a l l  F, l i m  E(V,U) 2 2. 
e + =  

Part  a. of Corollary 5 follows d i rec t ly  from (3.25) and b. follows from a. and  

Lehmann's upper bound of 7/24 f o r  A(F). We a l so  note tha t  (3.27) agrees with 

the r e s u l t s  one obtains by l e t t i n g  p + 0 i n  (3.24). In  other words, fo r  the 

B e f f i c i enc ie s  of Theorem 3, with H(x) = F(x-8) we have l i m  l i r n  B = 
P e + o o p + o  P 

l i m  l i m  B . p - + o  e-- P 

4. SOME COMPARISONS WITH THE PAIRED t-TEST 

It i s  in t e re s t ing  t o  cmpare the relat ionship of W t o  U with the re la t ion-  

ship of the  paired t - t e s t  t o  the unpaired t-test for  the case m =  n. 
2 2 2 2  

When F1 = N(P cJ ) and F2 = N(P CI ) with al = a2 an exact t e s t  of 1' 1 2' 2 

%: Pl = p2 can be based on 

J 
- 2  - 2 1% t1 = r 

( ( X , - X )  + (Y,-Y) ) 

(4.1) 

which, under Eo, has the Student t -d i s t r ibu t ion  on 2n-2 degrees of freedom. If 
2 2  
1 2  1 u + a the t t e s t  w i l l  not be exact.  By randomly pair ing the X ' s  with the 

Y's an exact t e s t  of Ho based on 

i=l 
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i s  obtained. 

notat ion,  t h a t  the  random pair ing r e su l t s  i n  the p a i r s  (X Y.).) 

has the  Student t -d i s t r ibu t ion  on n-1 degrees of freedom even when 

t ions  have d i f f e ren t  variances. 

(Here Zi = Yi- X. and we have again assumed, fo r  s implici ty  of 
1 

Under Ho, t2 i' 1 

the popula- 

The s i tua t ion  i n  the nonparametric case i s  p a r t i a l l y  analogous. 

and F2 d i f f e r  by a sca le  parameter the U test  w i l l  not be exact (e.g. see [lo]). 

I f  F1 

On the other  hand, W w i l l  preserve i t s  n u l l  d i s t r ibu t ion  when F 

symmetric about the  same point.  I n  par t icu lar ,  i f  F1(x) = H(x-B), F2(x) = H(c(x-8)) 

with c * 1 and H symmetric about 0, the W test w i l l  be exact but the U t e s t  w i l l  

and F2 a r e  1 

not be exact.  I f  considerations of exact s i z e  are important t o  the user, t h i s  

would represent an advantage of the W test. 

There may be other reasons t o  pair  - not a t  random. For example, w e  

might want t o  eliminate the  nuisance parameters i n  a model corresponding t o  

E(Xi) = P1+ bi, E(Yi) = P2+ bi, i=1,2,. . .n. A t  any r a t e  suppose we p a i r  when it 

i s  not r e a l l y  necessary. (The phrase "not r e a l l y  necessary" could r e f e r  t o  
2 2  = u when w e  are wary of unequal variances, or a l l  the  b . ' s  being equal i n  the  1 2  1 

? I 

u 

model j u s t  mentioned.) 

asymptotically w e  lose nothing as the  Pitman ef f ic iency  of t2 wi th  respect t o  

t i s  1. 

The ef f ic iency  loss for various d is t r ibu t ions  can be obtained from Table 2, 

sect ion 3. 

How much eff ic iency is  l o s t  by pair ing? With t - t e s t ing ,  

However, w e  can lose asymptotic e f f ic iency  by using W i n  place of U. 1 

One important d i ss imi la r i ty  between the t t and U-W correspondences 1- 2 

i s  the  following. 

parameter. 

(assuming f i n i t e  variances). 

i s  consis tent  i s  d i f fe ren t  than the se t  of a l t e rna t ives  f o r  which the W test 

By using t2 i n  place of t w e  r e t a i n  the same consistency 1' 

The two-sided tl  and t2  t e s t s  w i l l  be consis tent  i f  E(Y-X) * 0 

But t he  set of a l t e rna t ives  f o r  which the  U test 
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is consistent. 

P(X1 < Y ) * 1/2 while the two-sided tests based on V and W are consistent if 
and only if P(X + X2 < Y1+ Y2) * 1/2. If we consider the densities f (x) = 1 

if 4 5 x 5 5 ,  and 0 otherwise, and f2(x) = a if 1 - -  < x < 2, b if 10 ,< x 5 11, 
and 0 otherwise, a simple calculation shows that for a = b = 1/2 the two-sided 

The two-sided test based on U is consistent if and only if 

1 

1 1 

W and V tests are consistent but the two-sided U test is not consistent, whereas 

for a = 1 / E ,  b = l-(lfi) we get the opposite conclusion. Similar examples are 

easily constructed for the one-sided tests. 

5. CONCLUSION 

For pure translation alternatives, neither W nor V proved to be a worthy 

competitor of the U test. On the basis of this work the author recommends \ J  and 

V for consideration in situations where protection against alternatives of the 

form F2(x) = (l-p)Fl(x) 4- pF1(x-8) is desirable. For example, we may suspect 

that the treatment (with translation e)  will be active on a fraction p of the 

wbjects who receive it. Suppose we have little information about the value of 

p. For p close to 1, these alternatives resemble the pure translation alternatives 

H1(3-1). 

tivity to these alternatives with p near 0 is important, V or W may be preferred 

to u. 

For p close to 0, Table 4 and Corollary 5 are relevant. If good sensi- 

Confronted with a choice between W and V, the decision will depend on the 

vagaries of the user. Many people will immediately dismiss W due to its dependence 

on randomization. 

difficult to compute than 1.1. 

of V is small when s is approximately 1/2 but otherwise becomes intolerable 

On the other hand, V is not distribution-free and is more 

The efficiency loss incurred by using W in place 

(divide the entries of Table 3 by 2s). 
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